Sidebranching

Sidebranching explanation (1 of 8)

Sidebranching explanation (2 of 8)

Sidebranching explanation (3 of 8)

Sidebranching explanation (4 of 8)

Sidebranching explanation (5 of 8)

Sidebranching explanation (6 of 8)

Sidebranching explanation (7 of 8)

Sidebranching explanation (8 of 8)

Growth rate increase causes sidebranch formation

Observation**

A. Yamashita 2011

further growth

sidebranches grow

sidebranches sprout

growth spurt narrows tip

start

**From Nakaya data (1951), analyzed by A. Yamashita (20

Straight growth: branch & sidebranch

Layer nucleation explains the straight, 60° sidebranches

Variety

	Sn	ow (crystal	l cla	ssificat	ion sys	stem of	f M	agono-	Lee	e
1	Nia Elementary avedle		CIF Bullow column	8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-	P2b Stallar with sectorlike emby	<u>*</u>	P6b Plate with spatial deadrites	0	CP3d Plate with servils at ends	×	RSe Graupel-like with nonclined extensions
1	N3b Bundle of elementary needles	0	Cig Saild thick plate	*	P2c Dendrite with plates at ends	28.82	Pic Stellar with spatial plates	÷	SI Side planes	0	Rio Brugonal groupel
	Nie Elementary sheath	1	C1b Thick plate of sketetal form	Ŕ	P2d Dendrite with sector/kke endo	軍官	Plid Stallar with spatial dendelies	de	S2 Scalidike side plases	۲	Bab Lamp graspet
1	Nid Busille of elementary sheaths	N	Cli Scritt	众	P2e Plate with simple extensions	98	87a Radiating soormblage of plates		53 Side planes with bulkets and columns	۵	Rác Cuselike graupel
T	Nie Long solid column	×	C2a Combinative of bullets	×.	P2f Plate with sector extension	₩	PTb Radiating amen- blage of deadrites		R1a Rimed nordle	**	11 lee particle
×	N2a Combination of modies	雪	C25 Combination of columns	*	Plg Plate with dendrite extensions	£	CP1a Column with plates	E.C.	R3b Rimed columnae	20	12 Rimol particle
\times	N2b Combination of sheaths		Pia liccagonal plate	***	PJu Two branches	痶	CPID Column with dendrites		Hite Rimed plate or sector	M	Da Broken branch
X	N2c Combination of long solid columns	×	P1b Sector plate	÷.	P3b Three branches	*	CP1c Maltiple capped column	激	Rid Rimod stellar	*	136 Himed heaten branch
	Cla Pyramid	23	Pic Broad branch	*	P3c Four branches	stor.	CP2a Hallet with plates	0	H2n Densely rimed plate or sector	300	14 Minollanoon
8	CIb Cap	*	tid Sisflar	X	P4a Broad branch		CP26 Ballet	幾	H2b Deniely risend	0	GI. Minute column
A		1	1.222	ster.	with 12 branches	× 1	with dendrites		etelliar H2v	*	G2 Germ of skeletal form
U	Solid bullet	莱	Ordinary deadrile	兼	Dendrity with 12 branches	المهجلينا	Statlar with accilies	者和	Stellar with rised spatial branches	0	GJ Minute becagonal state
A	Claf Halles hellet	*	Pit Fernike dendrite	XHK	P5 Multirmed crystal	1/2-1/1	CP36 Stollar	Huld	RJa Graspet-like snow	*	G4 Minute staffar
			P24		Pie		with rolemos		of becagonal type	¢	GS Minute assemblage of plates
Ũ	Cie Salid onlenen	3	Stellar with plates at ends	and	Plate with spatial branches	-24-	Stellar with scrulls at ends	*	Graapel-like saww of lamp type	*	Gá Trregular greus

Unique features from T or S changes

VS

Natural $T \approx -15$ °C (small *T*, *S* changes)

Lab-grown T = -15 °C (constant T, S)

one $\approx 6 - 7$ °C change

two $\approx 6 - 7$ °C changes

Example

Even a small temperature change may visibly change the shape.

Cloud temperature heterogeneity

Even stratus clouds have highly variable temperature. Snow crystals respond to such temperature fluctuations.

Growth rate sensitivity

Layer nucleation produces a very temperature-sensitive growth rate

Mystery

Uncharted T and S territory

Nakaya's habit 'map' still has a lot of 'sea monsters':

(Much of the habit diagram is under dispute or unexplored.)

Other unknowns ...

When do defects control growth?

When does hollowing occur?

How does the initial nucleation affect habit?

... and

How does microscale variability in clouds affect the crystals?

How do pollutants & proximity effects change rates and habits?

What fundamentally is causing the strange behavior of Scrit?

Big mysteries that

Experimental apparatus, version 2

- to lower temperatures T
- greater control of T, S
- study initial nucleation, ...

Messages in water?

In 2006, a popular book was published, saying that water responded to our appreciation by making nice crystals.

But the idea of snow crystals carrying messages is neither new nor altogether wrong.

ecause growth

occurs by layer nucleation, habit

is reproducible and ultra-sensitive to

 \mathbf{K} nowledge from the new experiments may allow us to decipher further order, improve cloud modeling, and maybe solve a microscale mystery or two.

Much thanks to

Mark Cassino, Tsuneya Takahashi, Akira Yamashita, Tadanori Sei, Charles Knight for the images, Amy Saunders for the art, & Yoshinori Furukawa for the old filmstrip.

conditions, allowing us to decipher

its life history.

